Skip to contents

Solve for an optimal extension of qx values to higher ages by comparing projected life expectancy to input open-age life expectancy.

Usage

iterate_qx(dt, ax_params, id_vars, n_iterations = 50)

Arguments

dt

[data.table()]
Life tables with variables in id_vars plus: 'age_length', 'dx', 'ax', 'qx', 'terminal_age_start', 'mx_term'.

ax_params

[data.table()]
Parameters for qx to ax conversion. Columns: 'age', 'sex', 'par_con', 'par_qx', 'par_sqx'.

id_vars

[character()]
ID variables that uniquely identify each observation in dt. Must include 'age'.

n_iterations

[numeric()]
Number of iterations to run.

Value

[data.table()]

Life tables with age-specific old-age qx scaled to align with terminal mx.

Details

This method involves calculating ax values based on regression parameters of the formula:

$$ax \sim par_con + par_qx * q_x + par_sqx * {q_x}^2$$